`int p^5 ln(p) dp`
To evaluate, apply integration by parts intu dv = uv -int vdu.
So let
`u= ln (p)`
and
`dv = p^5 dp`
Then, differentiate u and integrate dv.
`du=1/p dp`
and
`v = int p^5dp = p^6/6`
And, plug-in them to the formula. So the integral becomes:
`int p^5 ln(p) dp`
`= ln(p) *p^6/6 - int p^6/6*1/pdp`
`= (p^6ln(p))/6 - int p^5/6 dp`
`= (p^6 ln(p))/6 - 1/6 int p^5 dp`
...
`int p^5 ln(p) dp`
To evaluate, apply integration by parts intu dv = uv -int vdu.
So let
`u= ln (p)`
and
`dv = p^5 dp`
Then, differentiate u and integrate dv.
`du=1/p dp`
and
`v = int p^5dp = p^6/6`
And, plug-in them to the formula. So the integral becomes:
`int p^5 ln(p) dp`
`= ln(p) *p^6/6 - int p^6/6*1/pdp`
`= (p^6ln(p))/6 - int p^5/6 dp`
`= (p^6 ln(p))/6 - 1/6 int p^5 dp`
`=(p^6 ln(p))/6 - 1/6*p^6/6 + C`
`=(p^6ln(p))/6 -p^6/36+C`
Therefore, `int p^5 ln(p) dp = (p^6 ln(p))/6 - p^6/36 + C` .
No comments:
Post a Comment