Tuesday, November 5, 2013

`int t^2 sin(beta t ) dt ` Evaluate the integral

You need to use the substitution `beta*t = u` , such that:


`beta*t =  u => beta dt = du `


Replacing the variable, yields:


`int t^2*sin(beta*t) dt = 1/(beta^3) int  u^2*sin u du`


You need to use the integration by parts such that:


`intfdg =fg - int gdf`


`f =u^2 => df = 2udu`


`dg =sin u=>g = -cos u`


`1/(beta^3)int u^2*sin u du = 1/(beta^3)(-u^2*cos u + 2int u*cos u du)`


You need to use the integration by parts...

You need to use the substitution `beta*t = u` , such that:


`beta*t =  u => beta dt = du `


Replacing the variable, yields:


`int t^2*sin(beta*t) dt = 1/(beta^3) int  u^2*sin u du`


You need to use the integration by parts such that:


`intfdg =fg - int gdf`


`f =u^2 => df = 2udu`


`dg =sin u=>g = -cos u`


`1/(beta^3)int u^2*sin u du = 1/(beta^3)(-u^2*cos u + 2int u*cos u du)`


You need to use the integration by parts again, such that:


`2int u*cos u du = 2u*sin u - 2int sin u du`


`f =u => df = du`


`dg =cos u=>g = sin u`


`2int u*cos u du = 2u*sin u + 2cos u + c`


`1/(beta^3)int u^2*sin u du = 1/(beta^3)(-u^2*cos u + 2u*sin u + 2cos u) + c`


Replacing back the variable, yields:


`int t^2*sin(beta*t) dt = 1/(beta^3)(-(beta*t)^2*cos(beta*t) + 2(beta*t)*sin(beta*t) + 2cos (beta*t)) + c`


Hence, evaluating the integral, using substitution, then integration by parts, yields `int t^2*sin(beta*t) dt = 1/(beta^3)(-(beta*t)^2*cos(beta*t) + 2(beta*t)*sin(beta*t) + 2cos (beta*t)) + c`

No comments:

Post a Comment

What is the Exposition, Rising Action, Climax, and Falling Action of "One Thousand Dollars"?

Exposition A "decidedly amused" Bobby Gillian leaves the offices of Tolman & Sharp where he is given an envelope containing $1...