Wednesday, November 26, 2014

`int arctan(4t) dt` Evaluate the integral

`intarctan(4t)dt`


If f(x) and g(x) are differentiable functions, then


`intf(x)g'(x)dx=f(x)g(x)-intf'(x)g(x)dx`


If we write f(x)=u and g'(x)=v, then


`intuvdx=uintvdx-int(u'intvdx)dx`


Using the above integration by parts method,


`intarctan(4t)dt=arctan(4t)*int1dt-int(d/dt(arctan(4t)int1dt)dt`


`=arctan(4t)*t-int(4/((4t)^2+1)*t)dt`


`=tarctan(4t)-4intt/(16t^2+1)dt`


Now let's evaluate `intt/(16t^2+1)dt`  by using the method of substitution,


Substitute `x=16t^2+1,=>dx=32tdt`


`intt/(16t^2+1)dt=intdx/(32x)`


`=1/32ln|x|`


substitute back `x=16t^2+1`


`=1/32ln|16t^2+1|`


`intarctan(4t)=t*arctan(4t)-4/32ln|16t^2+1|+C`


`intarctan(4t)=t*arctan(4t)-1/8ln|16t^2+1|+C`


C is a constant.

`intarctan(4t)dt`


If f(x) and g(x) are differentiable functions, then


`intf(x)g'(x)dx=f(x)g(x)-intf'(x)g(x)dx`


If we write f(x)=u and g'(x)=v, then


`intuvdx=uintvdx-int(u'intvdx)dx`


Using the above integration by parts method,


`intarctan(4t)dt=arctan(4t)*int1dt-int(d/dt(arctan(4t)int1dt)dt`


`=arctan(4t)*t-int(4/((4t)^2+1)*t)dt`


`=tarctan(4t)-4intt/(16t^2+1)dt`


Now let's evaluate `intt/(16t^2+1)dt`  by using the method of substitution,


Substitute `x=16t^2+1,=>dx=32tdt`


`intt/(16t^2+1)dt=intdx/(32x)`


`=1/32ln|x|`


substitute back `x=16t^2+1`


`=1/32ln|16t^2+1|`


`intarctan(4t)=t*arctan(4t)-4/32ln|16t^2+1|+C`


`intarctan(4t)=t*arctan(4t)-1/8ln|16t^2+1|+C`


C is a constant.

No comments:

Post a Comment

What is the Exposition, Rising Action, Climax, and Falling Action of "One Thousand Dollars"?

Exposition A "decidedly amused" Bobby Gillian leaves the offices of Tolman & Sharp where he is given an envelope containing $1...