EQ1: `2x-2y-6z=-4`
EQ2: `-3x + 2y + 6z=1`
EQ3: `x-y-5z=-3`
To solve this system of equation, let's apply elimination method. In this method, a variable or variables should be removed in order to get the value of the other variable.
Let's eliminate y. To do so, add EQ1 and EQ2.
`2x-2y-6z=-4`
`+` `-3x+2y+6z=1`
`----------------`
` `
`-x = -3`
Then, solve for x.
`(-x)/(-1)=(-3)/(-1)`
`x=3`
Isolate y again.Consider EQ1 and EQ3.
`2x-2y-6z=-4`
`x-y-5z=-3`
To be able to eliminate y, multiply EQ3 by -2. Then, add the two equations.
`2x-2y-6z=-4`
`+` `-2x+2y+10z=6`
`---------------`
`4z=2`
And, solve for z.
`(4z)/4=2/4`
`z=1/2`
Now that the values of the two variables are known, let's solve for the remaining variable. Let's plug-in x=3 and z=1/2 to EQ1.
`2x - 2y -6z = -4`
`2(3)-2y-6(1/2)=-4`
`6-2y-3=-4`
`3-2y=-4`
`3-3-2y=-4-3`
`-2y=-7`
(-2y)/(-2)=(-7)/(-2)
`y=7/2`
Therefore, the solution is `(3, 7/2, 1/2)` .
No comments:
Post a Comment