Tuesday, May 3, 2016

`(x + 2)/(x(x^2 - 9))` Write the partial fraction decomposition of the rational expression. Check your result algebraically.

`(x+2)/(x(x^2-9))`


`(x+2)/(x(x^2-9))=(x+2)/(x(x+3)(x-3))`


Now let `(x+2)/(x(x^2-9))=A/x+B/(x+3)+C/(x-3)`


`(x+2)/(x(x^2-9))=(A(x+3)(x-3)+B(x)(x-3)+C(x)(x+3))/(x(x+3)(x-3))`


`(x+2)/(x(x^2-9))=(A(x^2-9)+B(x^2-3x)+C(x^2+3x))/(x(x^2-9))`


`:.(x+2)=A(x^2-9)+B(x^2-3x)+C(x^2+3x)`


`x+2=Ax^2-9A+Bx^2-3Bx+Cx^2+3Cx`


`x+2=(A+B+C)x^2+(-3B+3C)x-9A`


equating the coefficients of the like terms,


`A+B+C=0`


`-3B+3C=1`


`-9A=2`


Solve the above three equations to get the values of A,B and C,


`A=-2/9`


Bach substitute the value of A in the first equation,


`-2/9+B+C=0`


`B+C=2/9`


From the above equation ,express C in terms of B


`C=2/9-B`


Substitute the expression of C in the second equation,


`-3B+3(2/9-B)=1`


`-3B+2/3-3B=1`


`-6B=1-2/3`


`-6B=1/3`


`B=-1/18`


Now plug the value of...

`(x+2)/(x(x^2-9))`


`(x+2)/(x(x^2-9))=(x+2)/(x(x+3)(x-3))`


Now let `(x+2)/(x(x^2-9))=A/x+B/(x+3)+C/(x-3)`


`(x+2)/(x(x^2-9))=(A(x+3)(x-3)+B(x)(x-3)+C(x)(x+3))/(x(x+3)(x-3))`


`(x+2)/(x(x^2-9))=(A(x^2-9)+B(x^2-3x)+C(x^2+3x))/(x(x^2-9))`


`:.(x+2)=A(x^2-9)+B(x^2-3x)+C(x^2+3x)`


`x+2=Ax^2-9A+Bx^2-3Bx+Cx^2+3Cx`


`x+2=(A+B+C)x^2+(-3B+3C)x-9A`


equating the coefficients of the like terms,


`A+B+C=0`


`-3B+3C=1`


`-9A=2`


Solve the above three equations to get the values of A,B and C,


`A=-2/9`


Bach substitute the value of A in the first equation,


`-2/9+B+C=0`


`B+C=2/9`


From the above equation ,express C in terms of B


`C=2/9-B`


Substitute the expression of C in the second equation,


`-3B+3(2/9-B)=1`


`-3B+2/3-3B=1`


`-6B=1-2/3`


`-6B=1/3`


`B=-1/18`


Now plug the value of B in the expression of C,


`C=2/9-(-1/18)`


`C=2/9+1/18`


`C=(2*2+1)/18`


`C=5/18`


`:.(x+2)/(x(x^2-9))=-2/(9x)-1/(18(x+3))+5/(18(x-3))`


Now let's check the result,


RHS=`-2/(9x)-1/(18(x+3))+5/(18(x-3))`


`=(-2*2(x+3)(x-3)-x(x-3)+5x(x+3))/(18x(x+3)(x-3))`


`=(-4(x^2-9)-(x^2-3x)+5(x^2+3x))/(18x(x^2-9))`


`=(-4x^2+36-x^2+3x+5x^2+15x)/(18x(x^2-9))`


`=(18x+36)/(18x(x^2-9))`


`=(18(x+2))/(18x(x^2-9))`


`=(x+2)/(x(x^2-9))`


=LHS


Hence it is verified.

No comments:

Post a Comment

What is the Exposition, Rising Action, Climax, and Falling Action of "One Thousand Dollars"?

Exposition A "decidedly amused" Bobby Gillian leaves the offices of Tolman & Sharp where he is given an envelope containing $1...