Wednesday, June 1, 2016

`int_1^(sqrt(3)) arctan(1/x) dx` Evaluate the integral

`int_1^sqrt(3)arctan(1/x)dx` 


If f(x) and g(x) are differentiable functions, then


`intf(x)g'(x)dx=f(x)g(x)-intf'(x)g(x)dx`


If we write f(x)=u and g'(x)=v, then


`intuvdx=uintvdx-int(u'intvdx)dx`


Using the above method of integration by parts,


`intarctan(1/x)dx=arctan(1/x)*int1dx-int(d/dx(arctan(1/x)int1dx)dx`


`=arctan(1/x)*x-int(1/(1+(1/x)^2)*d/dx(1/x)int1dx)dx`


`=xarctan(1/x)-int(x^2/(x^2+1)*(-1x^-2)*x)dx`


`=xarctan(1/x)+intx/(x^2+1)dx`


Now let's evaluate `intx/(x^2+1)dx`


substitute `t=x^2+1,=>dt=2xdx`


`intx/(x^2+1)dx=intdt/(2t)`


`=1/2ln|t|`


substitute back `t=x^2+1`


`=1/2ln|x^2+1|`


`intarctan(1/x)dx=xarctan(1/x)+1/2ln|x^2+1|+C`


C is a constant


Now evaluate the definite integral,


`int_1^sqrt(3)arctan(1/x)dx=[xarctan(1/x)+1/2ln|x^2+1|]_1^sqrt(3)`


`=[sqrt(3)arctan(1/sqrt(3))+1/2ln(3+1)]-[1arctan(1/1)+1/2ln(1+1)]`


`=[sqrt(3)pi/6+1/2ln(4)]-[pi/4+1/2ln2]`


`=[sqrt(3)pi/6+1/2ln(2^2)]-[pi/4+1/2ln(2)]`


`=(sqrt(3)pi/6+ln(2)-pi/4-1/2ln(2))`


`=(sqrt(3)pi/6-pi/4+1/2ln(2))`


`=(2sqrt(3)-3)pi/12+1/2ln(2)`


`int_1^sqrt(3)arctan(1/x)dx` 


If f(x) and g(x) are differentiable functions, then


`intf(x)g'(x)dx=f(x)g(x)-intf'(x)g(x)dx`


If we write f(x)=u and g'(x)=v, then


`intuvdx=uintvdx-int(u'intvdx)dx`


Using the above method of integration by parts,


`intarctan(1/x)dx=arctan(1/x)*int1dx-int(d/dx(arctan(1/x)int1dx)dx`


`=arctan(1/x)*x-int(1/(1+(1/x)^2)*d/dx(1/x)int1dx)dx`


`=xarctan(1/x)-int(x^2/(x^2+1)*(-1x^-2)*x)dx`


`=xarctan(1/x)+intx/(x^2+1)dx`


Now let's evaluate `intx/(x^2+1)dx`


substitute `t=x^2+1,=>dt=2xdx`


`intx/(x^2+1)dx=intdt/(2t)`


`=1/2ln|t|`


substitute back `t=x^2+1`


`=1/2ln|x^2+1|`


`intarctan(1/x)dx=xarctan(1/x)+1/2ln|x^2+1|+C`


C is a constant


Now evaluate the definite integral,


`int_1^sqrt(3)arctan(1/x)dx=[xarctan(1/x)+1/2ln|x^2+1|]_1^sqrt(3)`


`=[sqrt(3)arctan(1/sqrt(3))+1/2ln(3+1)]-[1arctan(1/1)+1/2ln(1+1)]`


`=[sqrt(3)pi/6+1/2ln(4)]-[pi/4+1/2ln2]`


`=[sqrt(3)pi/6+1/2ln(2^2)]-[pi/4+1/2ln(2)]`


`=(sqrt(3)pi/6+ln(2)-pi/4-1/2ln(2))`


`=(sqrt(3)pi/6-pi/4+1/2ln(2))`


`=(2sqrt(3)-3)pi/12+1/2ln(2)`


No comments:

Post a Comment

What is the Exposition, Rising Action, Climax, and Falling Action of "One Thousand Dollars"?

Exposition A "decidedly amused" Bobby Gillian leaves the offices of Tolman & Sharp where he is given an envelope containing $1...