You need to use the following substitution, such that:
`sqrt x = t => (dx)/(2sqrt x) = dt => dx = 2tdt`
Replacing the variable yields:
`int cos sqrt x dx = int (cos t)*(2tdt)`
You need to use the formula of integration by parts, such that:
`int udv = uv - int vdu`
`u = t => du = dt`
`dv = cos t => v = int cos t dt = sin...
You need to use the following substitution, such that:
`sqrt x = t => (dx)/(2sqrt x) = dt => dx = 2tdt`
Replacing the variable yields:
`int cos sqrt x dx = int (cos t)*(2tdt)`
You need to use the formula of integration by parts, such that:
`int udv = uv - int vdu`
`u = t => du = dt`
`dv = cos t => v = int cos t dt = sin t`
`int t*cos t dt = t*sin t - int sin t dt`
`int t*cos t dt = t*sin t + cos t + C`
`2int t*cos t dt = 2t*sin t + 2cos t + C`
Replacing back the variable `sqrt x` for t, yields:
`int cos sqrt x dx = 2sqrt x*sin(sqrt x) + 2cos(sqrt x)+ C`
Hence, evaluating the integral, using substitution and integration by parts yields `int cos sqrt x dx = 2sqrt x*sin(sqrt x) + 2cos(sqrt x)+ C.`
No comments:
Post a Comment