You need to use the substitution `1+x = t` , such that:
`1+x = t => dx = dt`
Changing the variable yields:
`int x*ln(1+x) dx = int (t-1)*ln t dt = int t*ln t dt - int ln t dt`
You need to use the integration by parts for `int t*ln t dt` such that:
`int udv = uv - int vdu`
`u = ln t => du = 1/t`
`dv = t=> v = t^2/2`
`int t*ln...
You need to use the substitution `1+x = t` , such that:
`1+x = t => dx = dt`
Changing the variable yields:
`int x*ln(1+x) dx = int (t-1)*ln t dt = int t*ln t dt - int ln t dt`
You need to use the integration by parts for `int t*ln t dt` such that:
`int udv = uv - int vdu`
`u = ln t => du = 1/t`
`dv = t=> v = t^2/2`
`int t*ln t dt = ( t^2/2)*ln t - int (1/t)*(t^2/2) dt`
`int t*ln t dt = ( t^2/2)*ln t - (1/2) int t dt`
`int t*ln t dt = (t^2/2)*ln t - (t^2/4) + c`
You need to use the integration by parts for `int ln t dt` such that:
`u =ln t=> du = 1/t`
`dv = 1=>v = t`
`int ln t dt = t*ln t - int t*1/t dt`
`int ln t dt = t*ln t - t + c`
`int (t-1)*ln t dt = (t^2/2)*ln t - (t^2/4) - t*ln t+ t + c`
Replacing back the variable, yields:
`int x*ln(1+x) dx = ((1+x)^2)/2*ln(1+x) - ((1+x)^2)/4 -(1+x)*ln (1+x) +(1+x) + c`
Hence, evaluating the integral, using integration by parts, yields `int x*ln(1+x) dx = ((1+x)^2)/2*ln(1+x) - ((1+x)^2)/4 -(1+x)*ln (1+x) +(1+x) + c.`
No comments:
Post a Comment