Saturday, February 18, 2017

`2x + 3y =0, 4x + 3y - z = 0, 8x + 3y + 3z = 0` Solve the system of linear equations and check any solutions algebraically.

Eq1: `2x+3y=0`


Eq2:`4x+3y-z=0`


Eq3:`8x+3y+3z=0`


Multiply equation 2 by 3,


`12x+9y-3z=0` 


Now add the above equation and equation 3,


`(8x+3y+3z)+(12x+9y-3z)=0`


`8x+12x+3y+9y+3z-3z=0`


`20x+12y=0`


`4(5x+3y)=0`


`5x+3y=0`


Now let's solve the above equation and equation 1,


`2x+3y=0`


`5x+3y=0`


Subtract the above equations


`2x-5x=0`


`-3x=0`


`x=0`


Substitute back the value of x,


`2x+3y=0`


`2(0)+3y=0`


`3y=0`


`y=0`


Plug in the value of x and y in equation 2,


`4(0)+3(0)-z=0` ` `


`-z=0`


`z=0`


Solutions of the equations are x=0, y=0 and z=0

Eq1: `2x+3y=0`


Eq2:`4x+3y-z=0`


Eq3:`8x+3y+3z=0`


Multiply equation 2 by 3,


`12x+9y-3z=0` 


Now add the above equation and equation 3,


`(8x+3y+3z)+(12x+9y-3z)=0`


`8x+12x+3y+9y+3z-3z=0`


`20x+12y=0`


`4(5x+3y)=0`


`5x+3y=0`


Now let's solve the above equation and equation 1,


`2x+3y=0`


`5x+3y=0`


Subtract the above equations


`2x-5x=0`


`-3x=0`


`x=0`


Substitute back the value of x,


`2x+3y=0`


`2(0)+3y=0`


`3y=0`


`y=0`


Plug in the value of x and y in equation 2,


`4(0)+3(0)-z=0` ` `


`-z=0`


`z=0`


Solutions of the equations are x=0, y=0 and z=0

No comments:

Post a Comment

What is the Exposition, Rising Action, Climax, and Falling Action of "One Thousand Dollars"?

Exposition A "decidedly amused" Bobby Gillian leaves the offices of Tolman & Sharp where he is given an envelope containing $1...