Saturday, February 25, 2017

`int_0^1 r^3 / sqrt(4 + r^2) dr` Evaluate the integral

`int_0^1r^3/sqrt(4+r^2)dr`


Let's first evaluate the indefinite integral using the method of substitution,


Substitute `x=4+r^2, =>r^2=x-4`


`=>dx=2rdr` 


`intr^3/sqrt(4+r^2)dr=int(x-4)/(2sqrt(x))dx`


`=1/2int(x/sqrt(x)-4/sqrt(x))dx`


`=1/2int(sqrt(x)-4/sqrt(x))dx`


`=1/2((x^(1/2+1)/(1/2+1))-4(x^(-1/2+1)/(-1/2+1)))`


`=1/2((x^(3/2)/(3/2))-4(x^(1/2)/(1/2)))`


`=x^(3/2)/3-4x^(1/2)`


substitute back `x=r^2+4`  and add constant C to the solution,


`=(r^2+4)^(3/2)/3-4(r^2+4)^(1/2)+C`


Now let's evaluate the definite integral,


`int_0^1r^3/sqrt(4+r^2)dr=[(r^2+4)^(3/2)/3-4(r^2+4)^(1/2)]_0^1`


`=[(1^2+4)^(3/2)/3-4(1^2+4)^(1/2)]-[(0^2+4)^(3/2)/3-4(0^2+4)^(1/2)]`


`=[(5)^(3/2)/3-4(5)^(1/2)]-[4^(3/2)/3-4(4^(1/2)]` 


`=[(5^(3/2)-12(5)^(1/2))/3]-[(2^2)^(3/2)/3-4*2]`


`=[5^(1/2)((5-12)/3)]-[2^3/3-8]`


`=[-7/3sqrt(5)]-[8/3-8]`


`=(-7/3sqrt(5))-((8-24)/3)`


`=-7/3sqrt(5)-(-16/3)`


`=-7/3sqrt(5)+16/3`


`=1/3(16-7sqrt(5))`


`int_0^1r^3/sqrt(4+r^2)dr`


Let's first evaluate the indefinite integral using the method of substitution,


Substitute `x=4+r^2, =>r^2=x-4`


`=>dx=2rdr` 


`intr^3/sqrt(4+r^2)dr=int(x-4)/(2sqrt(x))dx`


`=1/2int(x/sqrt(x)-4/sqrt(x))dx`


`=1/2int(sqrt(x)-4/sqrt(x))dx`


`=1/2((x^(1/2+1)/(1/2+1))-4(x^(-1/2+1)/(-1/2+1)))`


`=1/2((x^(3/2)/(3/2))-4(x^(1/2)/(1/2)))`


`=x^(3/2)/3-4x^(1/2)`


substitute back `x=r^2+4`  and add constant C to the solution,


`=(r^2+4)^(3/2)/3-4(r^2+4)^(1/2)+C`


Now let's evaluate the definite integral,


`int_0^1r^3/sqrt(4+r^2)dr=[(r^2+4)^(3/2)/3-4(r^2+4)^(1/2)]_0^1`


`=[(1^2+4)^(3/2)/3-4(1^2+4)^(1/2)]-[(0^2+4)^(3/2)/3-4(0^2+4)^(1/2)]`


`=[(5)^(3/2)/3-4(5)^(1/2)]-[4^(3/2)/3-4(4^(1/2)]` 


`=[(5^(3/2)-12(5)^(1/2))/3]-[(2^2)^(3/2)/3-4*2]`


`=[5^(1/2)((5-12)/3)]-[2^3/3-8]`


`=[-7/3sqrt(5)]-[8/3-8]`


`=(-7/3sqrt(5))-((8-24)/3)`


`=-7/3sqrt(5)-(-16/3)`


`=-7/3sqrt(5)+16/3`


`=1/3(16-7sqrt(5))`


No comments:

Post a Comment

What is the Exposition, Rising Action, Climax, and Falling Action of "One Thousand Dollars"?

Exposition A "decidedly amused" Bobby Gillian leaves the offices of Tolman & Sharp where he is given an envelope containing $1...